

| Form:           | Form Number                                     | EXC-01-02-02A                  |
|-----------------|-------------------------------------------------|--------------------------------|
|                 | Issue Number and Date                           | 2/3/24/2022/2963<br>05/12/2022 |
|                 | Number and Date of Revision or Modification     |                                |
| Course Syllabus | Deans Council Approval Decision Number          | 2/3/24/2023                    |
|                 | The Date of the Deans Council Approval Decision | 23/01/2023                     |
|                 | Number of Pages                                 | 06                             |

| 1.  | Course Title                      | Applied Mathematics-2                                |  |  |  |
|-----|-----------------------------------|------------------------------------------------------|--|--|--|
| 2.  | Course Number                     | 0301702                                              |  |  |  |
| 3.  | Credit Hours (Theory, Practical)  | 3                                                    |  |  |  |
| 5.  | Contact Hours (Theory, Practical) | 3                                                    |  |  |  |
| 4.  | Prerequisites/ Corequisites       | Applied Mathematics-1                                |  |  |  |
| 5.  | Program Title                     | Masters in Mathematics                               |  |  |  |
| 6.  | Program Code                      |                                                      |  |  |  |
| 7.  | School/ Center                    | Science                                              |  |  |  |
| 8.  | Department                        | Mathematics                                          |  |  |  |
| 9.  | Course Level                      | Elective specialization requirement                  |  |  |  |
| 10. | Year of Study and Semester (s)    | First year (semester-2), Second year (all semesters) |  |  |  |
| 11. | Other Department(s) Involved in   | None                                                 |  |  |  |
|     | Teaching the Course               |                                                      |  |  |  |
| 12. | Main Learning Language            |                                                      |  |  |  |
| 13. | Learning Types                    | ■Face to face learning □Blended □Fully online        |  |  |  |
| 14. | Online Platforms(s)               | □Moodle ■Microsoft Teams                             |  |  |  |
| 15. | Issuing Date                      | 15/12/2024                                           |  |  |  |
| 16. | Revision Date                     | 15/12/2024                                           |  |  |  |

### 17. Course Coordinator:

| Name: Mohammed Al-Horani | Contact hours: Sun, Tue, (10-11) |
|--------------------------|----------------------------------|
|                          | Mon, Wed (11:30-12:30)           |
| Office number: 206       | Phone number: 22094              |
| Email: horani@ju.edu.jo  |                                  |



### 18. Other Instructors:

| Name:          |
|----------------|
| Office number: |
| Phone number:  |
| Email:         |
| Contact hours: |
| Name:          |
| Office number: |
| Phone number:  |
| Email:         |
| Contact hours: |

#### **19. Course Description:**

Review of Separation of Variables, Review of Transform Methods, Eigen Function Expansions, Green's Function, Perturbation Methods, Integral Equations

### 20. Program Student Outcomes (SO's):

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended

learning outcomes of the program)

- SO-2) Analyze and apply different mathematical algorithms and theories and use modern techniques in both teaching and research
- **SO-4**) Formulate mathematical and statistical problems by modeling real-life problems, and solve them theoretically and/or numerically using technological tools.
- **SO-6**) Apply knowledge and mathematical tools and think creatively to solve real life problems and then verify and interpret the results correctly.
- SO-7) Work effectively within work teams and communicate scientific knowledge and results with peers and experts in the field.



### 21. Course Intended Learning Outcomes (CLO's):

(Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- 1. To solve nonhomogeneous PDEs using Eigenfunction expansion
- 2. To find a Green's function for a BVP of PDEs
- 3. To study the solvability of an integral equation (Fredholm and Volterra)
- 4. To apply perturbation methods on some PDEs

| Course | The learning levels to be achieved |               |          |           |            |          |  |  |  |
|--------|------------------------------------|---------------|----------|-----------|------------|----------|--|--|--|
| CLOs   | Remembering                        | Understanding | Applying | Analysing | evaluating | Creating |  |  |  |
| 1      | v                                  | ٧             | v        |           | v          |          |  |  |  |
| 2      |                                    | ٧             | v        | v         | ٧          |          |  |  |  |
| 3      | v                                  | v             | v        | ٧         | v          |          |  |  |  |
| 4      |                                    | ٧             | ٧        |           | ٧          |          |  |  |  |

### 22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes

of the program:

| Program SO's                                                                      | SO (1) | SO (2) | SO (3) | SO (4) | SO (5) | SO (6) | SO (7) | SO (8) |
|-----------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Course CLO's                                                                      |        |        |        |        |        |        |        |        |
| 1- To solve nonhomogeneous<br>PDEs using Eigenfunction<br>expansion               |        | •      |        | •      |        | •      |        |        |
| 2- To find a Green's function for<br>a BVP of PDEs                                |        | •      |        | •      |        | •      |        |        |
| 3- To study the solvability of an<br>integral equation (Fredholm<br>and Volterra) |        | •      |        |        |        |        |        |        |
| 4- To apply perturbation<br>methods on some PDEs                                  |        | •      |        |        |        |        | •      |        |



## 23. Topic Outline and Schedule:

|      |         |                                                       | 1                         |                                                                        |               |                                         |                    |                    |
|------|---------|-------------------------------------------------------|---------------------------|------------------------------------------------------------------------|---------------|-----------------------------------------|--------------------|--------------------|
| Week | Lecture | Topic                                                 | CLO/s Linked to the Topic | Learning Types<br>(Face to Face(FF)/ Blended(BL)/<br>Fully Online(FO)) | Platform Used | Synchronous / Asynchronous<br>Lecturing | Evaluation Methods | Learning Resources |
| 1    | 1.1     | Review of separation of variables                     | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 1    | 1.2     | Review of Transform Methods                           | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
|      | 2.1     | Review of Transform Methods                           | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 2    | 2.2     | Eigenfunction Expansion<br>(Introduction)             | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 3    | 3.1     | Nonhomogeneous Heat Equation                          | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 3    | 3.2     | Nonhomogeneous Heat Equation                          | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 4    | 4.1     | Nonhomogeneous Wave Equation                          | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 4    | 4.2     | Nonhomogeneous Wave Equation                          | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 5    | 5.1     | Nonhomogeneous Laplace Equation                       | 2,7                       | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 5    | 5.2     | Nonhomogeneous Laplace Equation                       | 2,7                       | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 6    | 6.1     | Green's Functions (Introduction)                      | 2,7                       | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 0    | 6.2     | Green's Functions for Heat Equation                   | 2,7                       | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
|      | 7.1     | Green's Functions for Wave Equation                   | 2,7                       | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 7    | 7.2     | Green's Functions for Laplace<br>Equation             | 2,7                       | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 8    | 8.1     | Perturbation Method (Introduction)                    | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| o    | 8.2     | Regular Perturbation                                  | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 9    | 9.1     | Regular Perturbation                                  | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 9    | 9.2     | Singular Perturbation                                 | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
|      | 10.1    | Singular Perturbation                                 | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 10   | 10.2    | Integral Equations (Basic concepts)                   | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
|      | 11.1    | Separable (Degenerate) kernel                         | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 11   | 11.2    | Reduction to system of algebraic equations            | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 12   | 12.1    | Reduction to system of algebraic equations (Examples) | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
|      | 12.2    | Resolvent kernal                                      | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 13   | 13.1    | Fredholm Alternative Theoerm                          | 2                         | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |
| 13   | 13.2    | Method of successive approximations                   | 2,4,6                     | FF                                                                     | Teams         | S                                       | Exams              | Text Book          |



# الجامعة الاردنية

|    | 14.1 | Volterra Integral equation                                       | 2,4,6 | FF | Teams | S | Exams | Text Book |
|----|------|------------------------------------------------------------------|-------|----|-------|---|-------|-----------|
| 14 | 14.2 | Volterra Integral equation ( Laplace and Differentiation Method) | 2,4,6 | FF | Teams | S | Exams | Text Book |
|    | 15.1 | Applications to ODEs ( IVP)                                      | 2     | FF | Teams | S | Exams | Text Book |
| 15 | 15.2 | Applications to ODEs ( BVP)                                      | 2     | FF | Teams | S | Exams | Text Book |

### 24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

| Evaluation Activity | Mark | Topic(s) | CLO/s Linked to the<br>Evaluation activity | Period (Week)         | Platform  |
|---------------------|------|----------|--------------------------------------------|-----------------------|-----------|
| Assignments         | 30   | Chap 1-4 | 2,4,6,7                                    | week 1-14             | On campus |
| Mid Term            | 30   | Chap 1-2 | 2                                          | 9 <sup>th</sup> week  | On campus |
| Final Exam          | 40   | Chap 1-4 | 2,4,6,7                                    | 16 <sup>th</sup> week | On campus |

### **25. Course Requirements:**

Each student must have:

- Computer

- Account on Microsoft Teams

### 26. Course Policies:

Class attendance of students at the beginning of the lecture is recoded.

Assignment is given to the students at regular intervals for them to solve and submit.

Late or no submission of assignments carries penalties or loss of grade points.

Absences recorded in each lecture with making excuses, if any.

Exiting during the lecture since Formal justification or excuse forces.

Mobile phone use in the classroom is Forbidden.



### 27. References:

A- Required book (s), assigned reading and audio-visuals:

- (1) Tyn Myint-U, Partial Differential Equations for Scientists and Engineers, Science Publishing Co. Inc., New York (1987).
- (2) Ram P. Kanwal, Linear Integral Equations: Theory and Technique, Academic Press, New York (1971).
- (3) A. H. Nayfeh, Perturbations Methods, New york (1973).

B- Recommended books, materials, and media:

- (4) J. Ray Hanna, John H. Rowland, Fourier Series, Transforms, and Boundary Value Problems: Second Edition, Dover Publications, Inc., New York (2008).
- (5) Lawrence C. Evans, Partial Differential Equations, American Mathematical Society (2010).
- (6) Differential equations with boundary value problems, Zill D., Cullen M.

### 28. Additional information:

| Name of the Instructor or the Course Coordinator:                   | Signature: | Date:      |
|---------------------------------------------------------------------|------------|------------|
| Prof. Mohammed Al-Horani                                            |            | 15-12-2024 |
| Name of the Head of Quality Assurance Committee/ Department:        | Signature: | Date:      |
| Prof. Manal Ghanem                                                  |            |            |
| Name of the Head of Department:                                     | Signature: | Date:      |
| Prof. Baha Alzalg                                                   |            |            |
| Name of the Head of Quality Assurance Committee/ School of Science: | Signature: | Date:      |
| Prof. Emad A. Abuosba                                               |            |            |
| Name of the Dean or the Director:                                   | Signature: | Date:      |
| Prof. Mahmoud I. Jaghoub                                            |            |            |